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Abstract

Within the framework of nonrelativisitic quantum electrodynamics we consider a
single nucleus and N electrons coupled to the radiation field. Since the total momen-
tum P is conserved, the Hamiltonian H admits a fiber decomposition with respect
to P with fiber Hamiltonian H(P ). A stable atom, resp. ion, means that the fiber
Hamiltonian H(P ) has an eigenvalue at the bottom of its spectrum. We establish
the existence of a ground state for H(P ) under (i) an explicit bound on P , (ii) a
binding condition, and (iii) an energy inequality. The binding condition is proven
to hold for a heavy nucleus and the energy inequality for spinless electrons.
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1 Introduction

An atom, resp. ion, consists of a nucleus with mass mn and charge Ze and N
electrons with mass me and charge −e. Within Schrödinger quantum mechan-
ics the atom is described by the Hamiltonian

hN = − 1

2mn

∆0 −
N∑

j=1

1

2me

∆j +
∑

1≤i<j≤N

e2

4π|xi − xj|
−

N∑
j=1

Ze2

4π|xj − x0|
, (1)
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where the units are such that ~ = 1. Here x0 ∈ R3 is the position of the nucleus,
xj ∈ R3 the one of the j-th electron, ∆j, j = 0, . . . , N , the corresponding
Laplacian, and mn,me, Z > 0. hN is regarded as an operator in L2(R3(N+1)).
For the moment we ignore the electron spin and Fermi statistics. hN commutes
with the total momentum

Ptot =
N∑

j=0

pj, pj = −i∇j. (2)

Hence, trivially, hN has purely continuous spectrum. To investigate the stabil-
ity of the atom one has to first transform to atomic coordinates, see [9]. Then
hN is written as the direct integral

hN =
∫ ⊕

R3
h(P ) dP. (3)

h(P ) is the Hamiltonian at fixed total momentum P and has the form

h(P ) =
1

2mtot

P 2 + h̃ (4)

with mtot = mn + Nme. h̃ is independent of P and acts on L2(R3N). The
stability of an atom is thus reduced to prove that h̃ has an eigenvalue at the
bottom of its spectrum. By a famous result of Zhislin [24], see also [36] such
a property holds provided N < Z + 1. The existence of negatively charged
ions is a much more tricky business. We refer to [5] for a survey. Note that a
stable atom can move at any speed, since the center of mass kinetic energy is
proportional to P 2.

The Coulomb interaction between the charges results from the coupling to
the Maxwell field and, in a full quantum theory, also the electromagnetic
field has to be quantized. While ultimately such a path leads to relativistic
QED, for the present paper we settle at the nonrelativistic version, which
has only electrons, nuclei, and photons as elementary objects. Our task is
to understand, within the framework of nonrelativistic QED, the stability of
atoms and ions in motion.

We have to add to (1) the field degrees of freedom and the coupling of the
charged particles to the field. For the present study we consider a single nucleus
with spin 0 and N spin 1/2 electrons respecting Fermi statistics, which results
in the Hamiltonian

H =
1

2mn

(
− i∇0 − ZeA(x0)

)2
+

N∑
j=1

1

2me

{
σj ·

(
− i∇j + eA(xj)

)}2

+
∑

1≤i<j≤N

e2

4π|xi − xj|
−

N∑
j=1

Ze2

4π|xj − x0|
+Hf . (5)

2



Here ∇j is the gradient w.r.t. xj and σj are the Pauli spin matrices of the j-th
electron. A(x) is the quantized transverse vector potential and Hf the energy
of the photons with dispersion relation ω(k) = |k|, see (10), (11) for a precise
definition. We use units such that the speed of light c = 1. An ultraviolet
cutoff is always imposed. Otherwise H would not be properly defined. The
infrared cutoff will be studied in detail.

As in the Schrödinger case, H commutes with the total momentum

Ptot = Pf +
N∑

j=0

(
− i∇j

)
(6)

with Pf the momentum of all photons. Hence, ifH(P ) denotes the Hamiltonian
at fixed total momentum P , as before one has the decomposition

H =
∫ ⊕

R3
H(P ) dP. (7)

The problem is to understand under which conditions H(P ) has an eigen-
value at the bottom of its spectrum. Physically the corresponding eigenstate
describes a stable atom dressed with a photon cloud and in motion with mo-
mentum P .

The case of a single charge, N = 0 in our notation, has been studied by J.
Fröhlich in his ground-breaking thesis [11]. We borrow many of his insights.
For a more current study of the low energy regime we refer to [6]. Very recently,
the case of dressed atoms and ions, as governed by Hamiltonian (5), has been
taken up by Amour, Grebert, and Guillot [2]. For N ≤ Z they succeed to prove
that H(P ) has a ground state provided |e|, |P |, and the ultraviolet cutoff
are sufficiently small. Our aim here is to completely avoid such smallness
assumptions, by developing a strategy along the lines of [17]. There the authors
consider the hamiltonian HW = H +

∑
j W (xj), i.e. they add a confining one-

body potenital W , and prove the existence of absolute ground states provided
a binding condition is satisfied. HW does not conserve the total momentum
and a decompostion as in (7) is not possible. If the ground state of HW exists,
then the atom is at rest. Thus, in some sense, the results in [17] cover the case
when the total momentum vanishes.

The existence of a ground state forH(P ) will be established under four general
assumptions. While their precise form will be stated in due course, it should
be helpful for the reader to understand their meaning in simple terms, first.

(i) |P | < Pc (Cherenkov radiation). If a single charge is accelerated to a speed
above the speed of light it emits Cherenkov radiation and thereby slows down.
Of course, physically, the electron has to move in a medium where light prop-
agates with a speed less than c. Our point is only that the model Hamiltonian
(5) knows about Cherenkov radiation. Mathematically Cherenkov radiation is
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reflected by the fact that there exists some Pc such that H(P ) has a ground
state for |P | < Pc, while H(P ) has no ground state for |P | > Pc. It has been
established already in [11] that Pc > (

√
3−1)mn for N = 0, see also [35]. Even

for N = 0, the converse statement, namely no ground state for P sufficiently
large, is left as an open problem. To our knowledge, the only result in this
direction is provided in [3], where the case N = 0 is studied for small coupling
to a scalar field.

(ii) Energy inequality. Let E(P ) be the bottom of the spectrum of H(P ). In
our proof we need that

E(0) ≤ E(P ). (8)

Physically such a property appears to be obvious. But even for a single charge
with spin we have no method to establish (8). We are equally at loss to include
Fermi statistics. On the other hand, in Section 6 we prove the inequality (8)
for an arbitrary number of spinless charges satisfying Bose/Boltzmann statis-
tics.

(iii) Strictly positive binding energy. Roughly speaking the binding condition
states that energywise it is more favorable to assemble all electrons near the
nucleus compared to having one or several electrons placed at infinity. The
presence of the quantized radiation field complicates matter, but we will state
a suitable binding condition which reduces to the known condition when the
coupling to the field is ignored. Of course, to ensure the existence of a ground
state then requires to establish the binding condition. We will prove it for a
heavy nucleus and, in greater generality, for electrons without spin.

(iv) Charge neutrality. In H of (5) the charge e appears in the Coulomb po-
tential and in the coupling to the quantized transverse vector potential A(x).
After all, both originate from the coupling to the Maxwell field. The particular
splitting in (5) is due to quantizing in the Coulomb gauge. Mathematically it
is often convenient to disregard such a link and to replace the Coulomb po-
tential by a general pair potential. By neutrality we refer here to the charges
entering in the coupling to the vector potential.

If Z = N , then the quantized radiation field sees a neutral charge. Thus, even
for an atom in motion, the induced vector potential decays faster than 1/|x|,
which can indeed be accomodated in Fock space. If Z 6= N , then the quantized
radiation field sees a non-zero charge. If the atom is at rest, P = 0, classically
the transverse vector field vanishes and quantum mechanically A(x) averaged
in the ground state has a fast decay. On the other hand if, P 6= 0, then A(x)
decays as 1/|x|, which cannot be accomodated in Fock space. The putative
physical ground state has an infinite number of (virtual) photons. Therefore
for N 6= Z a ground state in Fock space can exist only at P = 0. Already for a
single charge, such a property is a rather delicate phenomenon, see [6] for the
best results available. The results in [2] and in our work are in agreement with
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such general reasoning. For a neutral assembly of charges no infrared cutoff is
needed. However for a nonvanishing total charge we have to impose a suitable
infrared cutoff.

Perhaps more than in other papers, one of our difficulties concerns the gen-
erality in which results are written out. As guiding principle we adopt that
at least one physically accepted Hamiltonian should be covered. This requires
to work in space dimension d = 3 and to have electrons with spin 1/2. On
the other hand the core of the mathematical argument may become hidden
through over-explicit notation. For example, we will replace the Coulomb po-
tential by a general pair potential from a class which includes the Coulomb
potential, of course. The case of several spinless nuclei could be handled. If no
statistics is included, our proof carries over without changes. To include Bose
statistics requires extra efforts.

We provide a short outline of our paper. In Section 2 we define the Hamiltonian
for charges coupled to the Maxwell field and state the main result, namely the
existence of a ground state for H(P ) for P within a suitable range and under
a strictly positive binding energy. In case of an atom with a heavy nucleus we
provide explicit bounds on the range of P and for the validity of the binding
condition.

The self-adjointness of H(P ) for arbitrary couplings and cutoffs is proven
in Section 3. As an essential input we use the same property for the full
Hamiltonian as established in [21] by the use of functional integral techniques.

In Section 5 we consider a non-zero photon mass by replacing in Hf the dis-
persion relation ω(k) = |k| by ωm(k) = (k2 + m2)1/2, m > 0. We assume a
strictly positive binding energy and combine the methods in [17] with the gen-
eral properties of E(P ) from Section 4. This yields the existence of a ground
state for a suitable range of P ’s. The remaining task is to remove the infrared
cutoff, i.e., m → 0, see Section 6. For a neutral system of charges the form
factor ϕ̂(k) is allowed to have ϕ̂(0) = (2π)−3/2. For a non-neutral system the
form factor has to vanish as ϕ̂(k) ' |k| for small k. Our method is based on
pull-through which yields a bound on the number of soft photons and bounds
on the derivative of the ground state wave function with respect to the mo-
menta of the photons. In the appendices we collect some technical results
among them a slightly strengthened version of a result in [11].

Acknowledgements. T. Miyao thanks A. Arai, M. Griesemer, and M. Hirokawa
for useful comments. The present study was initiated when M. Loss visited
the Zentrum Mathematik at TUM as John-von-Neumann professor.
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2 Definitions and main results

2.1 Fock space and second quantization

First we recall some basic facts. Let h be a Hilbert space. The Fock space over
h is defined by

F(h) = ⊕∞
n=0 ⊗n

s h,

where⊗n
s h means the n-fold symmetric tensor product of h with the convention

⊗0
sh = C. The vector Ω = 1⊕ 0⊕ · · · ∈ F(h) is called the Fock vacuum.

We denote by a(f) the annihilation operator on F(h) with test vector f ∈ h [31,
Sec. X.7]. By definition, a(f) is densely defined, closed, and antilinear in f . The
adjoint a(f)∗ is the adjoint of a(f) and called the creation operator. Creation
and annihilation operators satisfy the canonical commutation relations

[a(f), a(g)∗] = 〈f, g〉h1l, [a(f), a(g)] = 0 = [a(f)∗, a(g)∗]

on the finite particle subspace

F0(h) =
∞⋃

m=1

{ϕ = ϕ0 ⊕ ϕ1 ⊕ · · · ∈ F(h) |ϕn = 0, forn ≥ m},

where 〈·, ·〉h denotes the inner product on h and 1l denotes the identity oper-
ator. We introduce a further important subspace of F(h). Let s be a subspace
of h. We define

Ffin(s) = Lin{a(f1)
∗ . . . a(fn)∗Ω, Ω | f1, . . . , fn ∈ s, n ∈ N},

where Lin{· · · } means the linear span of the set {· · · }. If s is dense in h, so is
Ffin(s) in F(h).

Let b be a contraction operator from h1 to h2, i.e., ‖b‖ ≤ 1. The linear operator
Γ(b) : F(h1) → F(h2) is defined by

Γ(b) � ⊗n
s h1 = ⊗nb

with the convention ⊗0b = 1l. It is well known that

Γ(b)a(f)∗ = a(bf)∗Γ(b), Γ(b)a(b∗f) = a(f)Γ(b).

For a densely defined closable operator c on h, dΓ(c) : F(h) → F(h) is defined
by

dΓ(c) � ⊗̂n
s dom(c) =

n∑
j=1

1l⊗ · · · ⊗ c
j th
⊗ · · · ⊗ 1l
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and

dΓ(c)Ω = 0

where ⊗̂ means the algebraic tensor product and for any linear operator A,
dom(A) denotes the domain of A. Here in the j-th summand c is at the j-th
entry. Clearly dΓ(c) is closable and we denote its closure by the same symbol.
As an example, the number operator Nf is given by Nf = dΓ(1l).

Let h1 and h2 be Hilbert spaces. Then there exists an isometry U : F(h1⊕h2) →
F(h1)⊗ F(h2) such that

UΩ = Ω⊗ Ω,

Ua(h1 ⊕ h2)U
∗ = a(h1)⊗ 1l + 1l⊗ a(h2).

2.2 Definition of the Hamiltonian

We consider N electrons with mass me and charge −e, one nucleus with mass
mn and charge Ze, moving in 3-dimensional space and coupled to the quantized
radiation field. The electrons are fermions with spin 1/2 and the nucleus is
spinless. The Hilbert space of state vectors is

HN+1 = L2(R3)⊗ [AN ⊗N L2(R3; C2)]⊗F ,

where F is the Fock space over ⊕2L2(R3),

F = F(⊕2L2(R3))

and AN denotes the antisymmetrizer. For f ∈ L2(R3), we define ar(f)#, r =
1, 2, by

ar(f)# = a
(
⊕2

j=1 δrjf
)#

,

where a# is either the creation or the annihilation operator on F . It is conve-
nient to use the notation ar(f) =

∫
R3 f(k)ar(k) dk.

The Hamiltonian of our system is the Pauli-Fierz Hamiltonian defined by

HN =
1

2mn

(
− i∇0 ⊗ 1l− ZeA(x0)

)2

+
N∑

j=1

1

2me

{
σj ·

(
− i∇j ⊗ 1l + eA(xj)

)}2

+ V ⊗ 1l + 1l⊗Hf . (9)

Here the quantized vector potential A(x) = (A1(x), A2(x), A3(x)) is given by
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Aµ(x) =
∑

r=1,2

∫
R3

χσ,κ(k)√
2(2π)3ω(k)

{
ar(k)

∗e−ik·x + ar(k) eik·x
}
er

µ(k) dk, (10)

where the form factor χσ,κ (0 ≤ σ < κ < ∞) is for simplicity choosen as
χσ,κ = χκ−χσ, χr with the indicator function of the ball of radius r. σ and κ
is the infrared cutoff and ultraviolet cutoff, resp.. The polarization vectors are
denoted by er = (er

1, e
r
2, e

r
3), r = 1, 2. Together with k/|k| they form a basis,

which for concreteness is taken as

e1(k) =
(k2,−k1, 0)√
k2

1 + k2
2

, e2(k) =
k

|k|
∧ e1(k).

Then er(k) · es(k) = δrs and er(k) · k = 0 a.e.. σj = (σj1, σj2, σj3) denotes the
spin matrix for the j-the particle. The Hamiltonian of the free photon field Hf

is defined by

Hf = dΓ(⊕2ω), ω(k) = |k|. (11)

We will prescribe the following conditions for V .

(V.1) V is symmetric in the particle labels. Moreover, V is a pair potential
of the form

V (x0, . . . , xN) =
∑

1≤i<j≤N

v(xi − xj) +
N∑

j=1

w(x0 − xj)

=:
∑

0≤i<j≤N

Vij(xi − xj).

Each Vij is infinitesimally small with respect to −∆ in the sense that there
exists sufficiently small ε > 0 and bε > 0 such that

‖Vijf‖ ≤ ε‖ −∆f‖+ bε‖f‖, f ∈ dom(−∆), (12)

where −∆ = −∑N
j=0 ∆j.

(V.2) v and w are in L2
loc(R3). Moreover Vij(x) → 0 as |x| → ∞.

As for the self-adjointness of HN the following result is well-known.

Proposition 2.1 [23] Assume (V.1). Then, for arbitrary Z, coupling e, mass
me,mn > 0 and cutoffs σ, κ with 0 ≤ σ < κ < ∞, HN is self-adjoint on
dom(−∆⊗ 1l)∩ dom(1l⊗Hf) and bounded from below. Moreover HN is essen-
tially self-adjoint on any core of −∆⊗ 1l + 1l⊗Hf .

Remark 1 The proposition holds also for massive photons, i.e., for the dis-
persion relation ωm(k) =

√
k2 +m2 instead of ω(k) = |k|. The proof uses
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the functional integral representation for m > 0 as established in [22] and is
otherwise in essence identical to the one in [23].

Let Ptot be the total momentum operator, namely

Ptot = −i
N∑

j=0

∇j ⊗ 1l + 1l⊗ Pf ,

where Pf = (Pf,1, Pf,2, Pf,3) = (dΓ(⊕2k1), dΓ(⊕2k2), dΓ(⊕2k3)) is the momen-
tum operator of the electromagnetic field. Each component Ptot,j, j = 1, 2, 3
of Ptot is essentially self-adjoint. We denote its closure by the same symbol
Ptot,j. To obtain H(P ) in (7), the Hamiltonian at fixed total momentum P ,
formally we regard Ptot = P as a parameter and simply substitute in (9) as

−i∇0 ⊗ 1l = P + i
N∑

j=1

∇j ⊗ 1l− 1l⊗ Pf .

In the resulting Hamiltonian we may then set x0 = 0. To be more precise, let
us define, for all x0 ∈ R3,

W (x0) = exp{ix0 · (Ptot + i∇0 ⊗ 1l)}

acting on HN . Since x0 → W (x0) is strongly continuous, we can define the
fiber direct integral operator

W =
∫ ⊕

R3
W (x0) dx0

acting on HN+1 =
∫⊕
R3 HN dx0, where

HN = [AN ⊗N L2(R3; C2)]⊗F .

Let U be the Fourier transformation with respect to the variable x0, acting in
L2(R3)⊗ [AN ⊗N L2(R3; C2)],

(Uf)(P, x1, . . . , xN) = (2π)−3/2
∫

R3
e−iP ·x0f(x0, x1, . . . , xN) dx0.

The linear operator UF = U ⊗ 1l is unitary on HN+1. Next we define a uni-
tary operator on HN+1 by U = UFW . The unitary operator U induces the
identification of HN+1 with

∫⊕
R3 HN dP , which is concretely given by

(Uψ)(n)(P, x1, . . . , xN , k1, . . . , kn)

=(2π)−3/2
∫

R3
e−i(P−

∑n

j=1
kj)·x0ψ(n)(x0, x1 − x0, . . . , xN − x0, k1, . . . , kn) dx0

for ψ = ⊕∞
n=0ψ

(n) ∈ HN+1. It is not hard to check that

UPtot,jU
∗ =

∫ ⊕

R3
Pj dP.
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Hence the operator U provides the direct integral decomposition of HN+1

with respect to the value of the total momentum. It can be easily seen that
eiλ·PtotHN ⊆ HN eiλ·Ptot for all λ ∈ R3, i.e., Ptot and HN strongly commute.
Thus UHNU

∗ is a decomposable operator, i.e., UHNU
∗ can be represented by

the fiber direct integral

UHNU
∗ =

∫ ⊕

R3
H(P ) dP. (13)

Clearly H(P ) is a self-adjoint operator for a.e. P acting in HN .

We introduce a dense subspace of HN by

HN
fin = [AN⊗̂

N
C∞

0 (R3
x; C2)]⊗̂Ffin(⊕2C∞

0 (R3)).

On HN
fin we can write down H(P ) as follows,

H(P ) =
N∑

j=1

1

2me

{
σj ·

(
− i∇j ⊗ 1l + eA(xj)

)}2

+
1

2mn

(
P + i

N∑
j=1

∇j ⊗ 1l− 1l⊗ Pf − ZeA(0)
)2

+ Ṽ ⊗ 1l + 1l⊗Hf , (14)

where

Ṽ (x1, . . . , xN) =
∑

1≤i<j≤N

v(xi − xj) +
N∑

j=1

w(xj). (15)

The symmetric operator H(P ) is now defined by the right hand side of (14).
Clearly H(P ) is closable and we denote its closure by the same symbol. Note
that, by (14),

H(P ) = H(P )

on the dense subspace HN
fin.

2.3 Main results

Our first result concerns the self-adjointness of H(P ).

Theorem 2.2 Assume (V.1). For arbitrary Z, coupling e, cutoffs σ, κ with
0 ≤ σ < κ <∞ and total momentum P , H(P ) is self-adjoint on AN ⊗ 1l∩N

j=1

dom(−∆j⊗1l)∩dom(1l⊗P 2
f )∩dom(1l⊗Hf), bounded from below and essentially

self-adjoint on any core of −∑N
j=1 ∆j ⊗ 1l + 1l ⊗ P 2

f + 1l ⊗ Hf . In particular,
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H(P ) is essentially self-adjoint on HN
fin. Moreover

UHNU
∗ =

∫ ⊕

R3
H(P ) dP.

We introduce the energy inequality and the binding condition.

Let Hm(P ) be the Hamiltonian (14) with the photon dispersion relation ωm(k)
=
√
k2 +m2 and Em(P ) be the infinimum of the spectrum of Hm(P ), i.e.,

Em(P ) = inf spec(Hm(P ))

with spec(A) denoting the spectrum of the linear operator A. The energy
inequality reads

Em(0) ≤ Em(P ) (E.I.)

for any sufficiently small m ≥ 0. As shorthand we set H0(P ) = H(P ) and let
E0(P ) = E(P ).

Let

DR = {ϕ ∈ HN
fin |ϕ(x) = 0 for |x| < R} (16)

and introduce a threshold energy Σ(P ) by

Σ(P ) = lim
R→∞

(
inf

ϕ∈DR,‖ϕ‖=1
〈ϕ,H(P )ϕ〉

)
. (17)

The binding condition for our model is stated as

Σ(P ) > E(P ). (B.C.)

In case of vanishing coupling to the Maxwell field the binding condition reduces
to more standard versions based on cluster decomposition, as will be explained
in Appendix D. We note that the binding condition depends on the parameter
P . Let Λ be the set on which the binding condition is satisfied, i.e.,

Λ = {P ∈ R3 |Σ(P ) > E(P )}. (18)

First we treat neutral atoms. Mathematically the neutrality condition is ex-
pressed as

N = Z. (N)

Theorem 2.3 Assume (V.1), (V.2), (E.I.), (N), and the infrared cutoff σ =
0. If P ∈ Λ and |P | < mn, then H(P ) has a ground state.
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The condition P ∈ Λ is implicit. But it can be written more explicitly under
stronger assumptions.

Let ΠN be the set of the subsets of {0, 1, 2, . . . , N}. We denote by Hβ the
Hamiltonian of the form (9), but only refering to the particles in the set
β ∈ ΠN , i.e.,

Hβ =
1

2mn

(
− i∇0 ⊗ 1l− ZeA(x0)

)2

+
∑

j∈β\{0}

1

2me

{
σj ·

(
− i∇j ⊗ 1l + eA(xj)

)}2

+
∑

i,j∈β,0≤i<j≤N

Vij ⊗ 1l + 1l⊗Hf ,

if 0 ∈ β, and, if 0 /∈ β,

Hβ =
∑
j∈β

1

2me

{
σj ·

(
− i∇j ⊗ 1l + eA(xj)

)}2

+
∑

i,j∈β,0≤i<j≤N

Vij ⊗ 1l + 1l⊗Hf .

Let us introduce

Eβ = inf spec(Hβ) , (19)

and let EN = inf spec(HN). (With our notation, EN = E{0,1,...,N}.) The binding
energy for the Hamiltonian HN is defined by

Ebin = min
{
Eβ + Eβ̄ | β ∈ ΠN and β 6= ∅, {0, 1, . . . , N}

}
− EN ,

where β̄ denotes the complement of β.

Theorem 2.4 Assume (V.1), (V.2), (E.I.), (N), and the infrared cutoff σ =
0. If Ebin > 0 and

|P | < min
{
mn,

√
2mnEbin

}
,

then H(P ) has a ground state.

As explained before, for ions we need an infrared cutoff.

Theorem 2.5 Assume (V.1), (V.2), (E.I.), and a non-neutral system, i.e.,
(N) does not hold. Suppose that σ > 0.

(i) If P ∈ Λ and |P | < mn, then H(P ) has a ground state.
(ii) If Ebin > 0 and |P | < min{mn,

√
2mnEbin}, then H(P ) has a ground

state.
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To establish the parameter values for which the binding condition holds is
a difficult problem. Indeed, to prove Ebin > 0 in case of a fixed nucleus is
already very hard work [26]. Thus the reader might worry whether the binding
condition can be satisfied at all. We will prove it for mn sufficiently large.

In the limit mn →∞, HN of (9) converges to H∞
N defined by

H∞
N =

N∑
j=1

1

2me

{
σj ·

(
− i∇j ⊗ 1l + eA(xj)

)}2

+ Ṽ ⊗ 1l + 1l⊗Hf ,

where we have set x0 = 0 and Ṽ is defined in (15). Let E∞
N = inf spec(H∞

N ).
With the cluster decomposition from above the binding energy for H∞

N is given
by

E∞
bin = min

{
E∞

β + E∞
β̄ | β ⊂ {1, . . . , N} and β 6= ∅, {1, . . . , N}

}
− E∞

N .

In [26] conditions are provided under which E∞
bin > 0.

Remark 2 In [26] E∞
bin > 0 is proved for molecules and atoms with a smooth

cutoff function ϕ̂ instead of the sharp cutoff χ0,κ used here. There is no diffi-
culty in extending our main results to a smooth cutoff.

The following proposition is needed in Theorem 2.5 and Theorem 2.4 and is
proved in Appendix B.

Proposition 2.6 Assume (V.1), (V.2) and (E.I.). For sufficiently large mn,

the binding condition (B.C.) holds provided |P | <
√
mnE∞

bin.

3 Proof of Theorem 2.2

Theorem 2.2 is proved using the following strategy. Firstly we define a new
Hamiltonian H̃(P ) which is self-adjoint and which coincides with H(P ) on a
dense domain. Secondly we prove

UHNU
∗ =

∫ ⊕

R3
H̃(P ) dP (20)

and clarify the domain and the domain of essential self-adjointness of H̃(P )
by applying Proposition 2.1 and (20). Finally we show that this self-adjoint
operator equals H(P ). Clearly, the essential point lies in the choice of H̃(P ).
The reader might think that the simplest way to define a new Hamiltonian
H̃(P ) is by just taking the Friedrichs extension H1(P ) of H(P ). However, in
this case, it seems difficult to establish the measurability of H1(P ) in the sense
that the map P → 〈ϕ, (H1(P )+ i)−1ψ〉 is measurable. On the other hand, the
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measurability of H̃(P ) is required to define
∫⊕
R3 H̃(P ) dP . Therefore we will

adopt another construction for the Hamiltonian H̃(P ), which will be put to
use in Section 6.

3.1 Definitions

Let

HA =
1

2mn

(
− i∇1 ⊗ 1l− ZeA(−x1)

)2

+
1

2
1l⊗Hf .

By Proposition 2.1, HA is self-adjoint on dom(−∆1⊗ 1l)∩ dom(1l⊗Hf) for all
e and cutoffs. For all P ∈ R3, let V(P ) be a unitary operator defined by

V(P ) = exp
{
ix1 ·

(
P + i

N∑
j=2

∇j ⊗ 1l− 1l⊗ Pf

)}
. (21)

We introduce K(P ) by

K(P ) = V(P )HAV(P )∗, (22)

then K(P ) is also self-adjoint for all e and P ∈ R3, and

K(P )Ψ =
1

2mn

(
P + i

N∑
j=1

∇j ⊗ 1l− 1l⊗ Pf − ZeA(0)
)2

Ψ +
1

2
1l⊗HfΨ

for Ψ ∈ HN
fin.

Let

HPF =
N∑

j=1

1

2me

{
σj ·

(
− i∇j ⊗ 1l + eA(xj)

)}2

+ Ṽ ⊗ 1l +
1

2
1l⊗Hf

acting in HN . By (V.1), Ṽ is infinitesimally small with respect to −∑N
j=1 ∆j.

Hence, by Proposition 2.1, HPF is self-adjoint on AN ⊗1l∩N
j=1 dom(−∆j⊗1l)∩

dom(1l⊗Hf), essentially self-adjoint on HN
fin for arbitrary coupling and cutoffs.

Now we define a densely defined symmetric form sP as follows

Q(sP ) =dom(|HPF|1/2) ∩ dom(K(P )1/2), (form domain)

sP (ϕ, ψ) =〈Ĥ1/2
PF ϕ, Ĥ

1/2
PF ψ〉+ 〈K(P )1/2ϕ,K(P )1/2ψ〉

+ inf spec(HPF)〈ϕ, ψ〉,

for ϕ, ψ ∈ Q(sP ), where Â = A − inf spec(A). sP is closed and semibounded.
Let H̃(P ) be the self-adjoint operator associated with sP . Then H̃(P ) is a

14



self-adjoint extension of HPF +K(P ) and the formula

H̃(P )Ψ = H(P )Ψ

holds for all Ψ ∈ HN
fin.

Lemma 3.1 The mapping P → (H̃(P )+i)−1 is measurable, i.e., for all ϕ, ψ ∈
HN , P → 〈ϕ, (H̃(P ) + i)−1ψ〉 is a measurable mapping.

Proof. By Kato’s strong Trotter product formula [30, Theorem S.21], we have

e−tH̃(P ) = s- lim
n→∞

(
e−tHPF/ne−tK(P )/n

)n

. (23)

Since P → e−sK(P ) = V(P )e−sHAV(P )∗ is strongly continuous, P → e−tH̃(P ) is
measurable by (23). Therefore, we obtain the desired assertion. 2

Thanks to the above lemma and [32, Theorem XIII.85], one can define a self-
adjoint operator H ′ on HN by

H ′ =
∫ ⊕

R3
H̃(P ) dP.

Proposition 3.2

UHNU
∗ =

∫ ⊕

R3
H̃(P ) dP.

To prove this we need some preparations. Let

L = −
N∑

j=1

∆j ⊗ 1l +
(
k ⊗ 1l + i

N∑
j=1

∇j ⊗ 1l− 1l⊗ Pf

)2

+ 1l⊗Hf . (24)

L is closable on

V = C∞
0 (R3

k) ⊗̂
[
AN⊗̂

N
C∞

0 (R3
x; C2)

]
⊗̂Ffin(⊕2C∞

0 (R3)). (25)

and we denote its closure by the same symbol.

Lemma 3.3 L is essentially self-adjoint on V and

L = U(−∆⊗ 1l + 1l⊗Hf)U
∗. (26)
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Proof. Essential self-adjointness of L on V is proven by Nelson’s commutator
theorem [31, Theorem X.37] with a test operator J = −∑N

j=1 ∆j ⊗ 1l + k2 ⊗
1l + 1l⊗ P 2

f + 1l⊗Hf + 1l⊗ 1l. We can confirm that (26) holds on V . Since V is
a core of L, we conclude (26) as an operator equality. 2

Proof of Proposition 3.2
By Proposition 2.1 and the above lemma, UHNU

∗ is essentially self-adjoint on
V . On V we can check that UHNU

∗ = H ′ which implies the proposition. 2

3.2 Domain of self-adjointness for H(P )

We prove Theorem 2.2 by series of lemmata. The first lemma is a simple
application of the closed graph theorem.

Lemma 3.4 Let A and B be self-adjoint operators. Suppose that dom(A) =
dom(B). Then there exists C1 > 0 and C2 > 0 such that

C1‖ϕ‖A ≤ ‖ϕ‖B ≤ C2‖ϕ‖A,

where, for a linear operator T , ‖ϕ‖2
T = ‖Tϕ‖2 + ‖ϕ‖2 for ϕ ∈ dom(T ). In

particular, A is essentially self-adjoint on any core of B and B is essentially
self-adjoint on any core of A.

Proof. Let D = dom(A) = dom(B). Norm spaces DA = (D, ‖ · ‖A) and
DB = (D, ‖ · ‖B) are both closed by the self-adjointness of A and B. Now let
i : DA → DB defined by

iϕ = ϕ, ϕ ∈ DA.

Then the graph of i is closed. Indeed let

gr(i) = {ϕ⊕ iϕ |ϕ ∈ D} ⊆ DA ⊕DB

and let {ϕn⊕iϕn} be a Cauchy sequence in gr(i). Then {ϕn} is also Cauchy in
DA, DB and the underlying Hilbert space. Thus there exists ϕ = limn→∞ ϕn ∈
D, limn→∞Aϕn = Aϕ and limn→∞Bϕn = Bϕ by the closedness of self-adjoint
operators. Therefore {ϕn ⊕ iϕn} is a convergent sequence in gr(i). Applying
the closed graph theorem, i is bounded and

‖ϕ‖B ≤ C‖ϕ‖A

for some constant C > 0. From this B is essentially self-adjoint on any core
of A. Interchanging the role of A and B, we also conclude the remaining
assertion. 2

16



Lemma 3.5 Let A and B be positive decomposable operators on the Hilbert
space

∫⊕
M X dµ(m) with dom(A) = dom(B). Then, for µ-a.e. m, dom(A(m)) =

dom(B(m)), furthermore the self-adjoint operator A(m) is essentially self-
adjoint on any core of B(m), and the self-adjoint operator B(m) is essentially
self-adjoint on any core of dom(A(m)).

Proof. By Lemma 3.4, there is a constant d > 0 so that

‖Aϕ‖ ≤ d(‖Bϕ‖+ ‖ϕ‖), ϕ ∈ dom(A).

Hence C := A(B + 1l)−1 is a bounded operator.

Since A and (B+1l)−1 are both decomposable, C is also decomposable. There-
fore we can represent C as C =

∫⊕
M C(m) dµ(m). Moreover it is not hard to

check that C(m) = A(m)(B(m) + 1l)−1 for µ-a.e. m. (Note that A(m) and
B(m) are both self-adjoint for µ-a.e..) Hence, A(m)(B(m) + 1l)−1 is bounded
and

‖A(m)(B(m) + 1l)−1‖ ≤ ‖C‖
for µ-a.e. m. Thus A(m) e−tB(m) = A(m)(B(m) + 1l)−1(B(m) + 1l) e−tB(m) is
bounded for all t > 0. This means e−tB(m)dom(A(m)) ⊆ dom(A(m)) for all
t > 0. By applying [31, Theorem X.49], B(m) is essentially self-adjoint on
dom(A(m)). Similarly A(m) is essentially self-adjoint on dom(B(m)) for µ-
a.e.. Therefore dom(A(m)) = dom(B(m)) and we have the desired result by
Lemma 3.4. 2

Lemma 3.6 Let

L(P ) = −
N∑

j=1

∆j ⊗ 1l +
(
P + i

N∑
j=1

∇j ⊗ 1l− 1l⊗ Pf

)2

+ 1l⊗Hf .

acting in HN . Then, for all P ∈ R3, L(P ) is self-adjoint on ∩N
j=1dom(−∆j ⊗

1l)∩dom(1l⊗P 2
f )∩dom(1l⊗Hf), and essentially self-ajoint on HN

fin. Moreover

L =
∫ ⊕

R3
L(P ) dP. (27)

Proof. By the functional calculus, we confirm that dom(L(P )) = ∩N
j=1dom(

∆j ⊗ 1l) ∩ dom(1l ⊗ P 2
f ) ∩ dom(1l ⊗ Hf). Thus by applying Lemma 3.4, L(P )

is essentially self-adjoint on HN
fin. On the subspace V defined by (25) one can

easily see (27). Thus we conclude (27) as an operator equality. 2
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Lemma 3.7 Let H̃V =0(P ) be the Hamiltonian H̃(P ) with V = 0. Then, for
all P ∈ R3, there is a finite constant C > 0 independent of P such that

‖H̃V =0(P )ϕ‖ ≤ C
(
‖H̃(P )ϕ‖+ ‖ϕ‖

)
, ϕ ∈ HN

fin.

Proof. Let HV =0
N be the Hamiltonian HN with V = 0. By Proposition 2.1,

the two self-adjoint operators HV =0
N and HN have the same domain. Hence

there is a constant C > 0 such that

‖UHV =0
N U∗Ψ‖ ≤ C

(
‖UHNU

∗Ψ‖+ ‖Ψ‖
)

by Lemma 3.4. Let Mn(P ) = {k ∈ R3 | |kj − Pj| ≤ 1
2n
, j = 1, 2, 3} for P ∈ R3.

Taking Ψ(k, x1, . . . , xN) = ηn(k)ϕ(x1, . . . , xN) with ηn = n3/2χMn(P ) and ϕ ∈
HN

fin, one has

( ∫
R3
|ηn(k)|2‖H̃V =0(k)ϕ‖2 dk

)1/2

≤C
( ∫

R3
|ηn(k)|2‖H̃(k)ϕ‖2 dk

)1/2

+ C‖ϕ‖

by Proposition 3.2. Noting that k → H̃V =0(k)ϕ and k → H̃(k)ϕ are strongly
continuous, we can conclude the assertion by taking n→∞. 2

Proof of Theorem 2.2
By Proposition 2.1 and (26), UHNU

∗ is self-adjoint on dom(L). By applying
Lemma 3.5 and 3.6, H̃(P ) is self-adjoint on dom(L(P )) = ∩N

j=1dom(∆j ⊗ 1l)∩
dom(1l⊗P 2

f )∩ dom(1l⊗Hf) and essentially self-adjoint on HN
fin for P ∈ R3\N

where N is a measure zero set.

Let P0 ∈ N . We introduce a linear operator δP H̃(P0) by

δP H̃(P0) = H̃(P )− H̃(P0).

For each Ψ ∈ HN
fin and P /∈ N ,

δP H̃(P0)Ψ = [H̃(P0)− H̃(P )]Ψ

=
1

2mn

[2(P − P0) · (X − P ) + 3P 2 − P 2
0 − 2P0 · P ]Ψ,

where X = i
∑N

j=1∇j⊗1l−1l⊗Pf−ZeA(0). We prove that there is a constant
C independent of P and BP,P0 > 0 which is finite for all P /∈ N such that

‖δpH̃(P0)Φ‖ ≤ C|P − P0|
(
‖H̃(P )Φ‖+BP,P0‖Φ‖

)
(28)
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for all Φ ∈ dom(H̃(P )). For Ψ ∈ HN
fin and j = 1, 2, 3,

‖(Xj − Pj)Ψ‖ ≤ C1

(
‖H̃V =0(P )Ψ‖+ ‖Ψ‖

)
≤ C2

(
‖H̃(P )Ψ‖+ ‖Ψ‖

)
by Lemma 3.7. Note that C2 does not depend on P . From this, we obtain
(28) for Φ ∈ HN

fin. Since HN
fin is a core of H̃(P ), we can extend the result to

dom(H̃(P )).

Since N has measure zero, there is a P ∈ R3\N such that |P − P0|C < 1.
Thus, by (28) and the Kato-Rellich theorem [31, Theorem X.12], H̃(P0) =
H̃(P ) + δP H̃(P0) is self-adjoint on dom(H̃(P )) = dom(L(P )) and essentially
self-adjoint on any core of H̃(P ). Since, for all P ∈ R3, H̃(P ) is essentially self-
adjoint on HN

fin and H(P )Ψ = H̃(P )Ψ for Ψ ∈ HN
fin, we have H(P ) = H̃(P )

for all P . 2

4 Existence of the ground state for massive photons

In this section, we concentrate on the existence of a ground state with massive
photons, m > 0. Throughout this section, we assume (V.1), (V.2), (E.I.) and
m > 0.

Let Σm(P ) be the threshold energy Σ(P ) in the case of massive photons.
Likewise let Λm be the set of P ’s satisfying the binding condition for the
massive case.

Theorem 4.1 Assume that Λm 6= ∅. Then, for P ∈ Λm and |P | < mn, Hm(P )
has a ground state.

We will prove this theorem by series of propositions and lemmata. The basic
idea of our proof is taken from [10,17]. The easiest case N = 1 will be worked
and explicitely. It is not hard to extend this proof to general N .

First we prove the following.

Proposition 4.2 Let ∆m(P ) = infk[Em(P − k) − Em(P ) + ωm(k)] and let
δm(P ) = min{∆m(P ),Σm(P )− Em(P )}. For all P ∈ R3,

inf ess. spec(Hm(P )) ≥ Em(P ) + δm(P ).

We first need some preparations. Let j1 and j2 be two smooth localization
functions so that j2

1 + j2
2 = 1 and j1 is supported in a ball of radius L. We
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introduce linear operators j̃1 and j̃2 on ⊕2L2(R3) by

j̃i(f1 ⊕ f2) = ji(−i∇k)f1 ⊕ ji(−i∇k)f2, i = 1, 2.

Now we define j : ⊕2L2(R3) → [⊕2L2(R3)] ⊕ [⊕2L2(R3)] by jf = j̃1f ⊕ j̃2f
for each f ∈ ⊕2L2(R3). Note that j∗j = 1l.

Let U be the isometry from F([⊕2L2(R3)] ⊕ [⊕2L2(R3)]) to F ⊗ F given in
Section 2.1 and set

Γ̌(j) = UΓ(j) : F → F ⊗F .
From the definition it follows that

Γ̌(j)ar(f)# = [ar(j1(−i∇k)f)# ⊗ 1l + 1l⊗ ar(j2(−i∇k)f)#]Γ̌(j).

Since j is an isometry, so is Γ̌(j). We remark that, for a multiplication operator
h on L2(R3),∥∥∥{

dΓ(⊕2h)− Γ̌(j)∗[dΓ(⊕2h)⊗ 1l + 1l⊗ dΓ(⊕2h)]Γ̌(j)
}
Ψ

∥∥∥
≤

(∥∥∥[j1(−i∇k), h
]∥∥∥ +

∥∥∥[
j1(−i∇k), h

]∥∥∥)
‖NfΨ‖ (29)

holds by the definition (or see, e.g., [10, Section 2]).

Let H⊗
m(P ) be a self-adjoint operator on HN ⊗F (N = 1) associated with the

form sum

1

2me

{
σ ·

(
p⊗ 1l + e1l⊗ A(x1)

)}2

⊗ 1l

+
1

2mn

(
P − p⊗ 1l⊗ 1l− 1l⊗ Pf ⊗ 1l− 1l⊗ 1l⊗ Pf − Ze1l⊗ A(0)⊗ 1l

)2

+Ṽ ⊗ 1l⊗ 1l + 1l⊗Hf,m ⊗ 1l + 1l⊗ 1l⊗Hf,m, (30)

where p = −i∇x1 . Note that H⊗
m(P ) can be written as

H1,m ⊗ 1l + 1l⊗Hf,m + J⊗(P ),

where J⊗(P ) is defined by the second term in (30).

Lemma 4.3 (i) For ϕ ∈ HN
fin,

〈ϕ,Hm(P )ϕ〉 = 〈Γ̌(j)ϕ,H⊗
m(P )Γ̌(j)ϕ〉+ oL(ϕ)

where oL(ϕ) is the error term which satisfies

|oL(ϕ)| ≤ õ(L0)(‖Hm(P )ϕ‖2 + ‖ϕ‖2).

Here õ(L0) is a function of L does not depend on ϕ and vanishes as L→∞.
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(ii) For ϕ ∈ HN
fin⊗̂Ffin(⊕2C∞

0 (R3)),

〈ϕ,H⊗
m(P )ϕ〉 ≥ 〈ϕ, [Em(P ) + (1l− PΩ)∆m(P )]ϕ〉,

where PΩ is the orthogonal projection onto HN ⊗ Ω.

Proof. (i) In [17, Lemma A.1] the following assertion has already been proven,

〈ϕ,H1,mϕ〉 = 〈ϕ, Γ̌(j)∗[H1,m ⊗ 1l + 1l⊗Hf,m]Γ̌(j)ϕ〉+ oL(ϕ).

So it suffices to prove

〈ϕ, J(P )ϕ〉 = 〈ϕ, Γ̌(j)∗J⊗(P )Γ̌(j)ϕ〉+ oL(ϕ),

where

J(P ) =
1

2mn

(
P − p⊗ 1l− 1l⊗ Pf − Ze1l⊗ A(0)

)2

.

Let X = P − p⊗ 1l− ZeA(0). We can easily check

J(P )− Γ̌(j)∗J⊗(P )Γ̌(j) = (X − 1l⊗ Pf)Q+Q(X − 1l⊗ Pf)−Q2,

where

Q = X − 1l⊗ Pf − Γ̌(j)∗
(
X ⊗ 1l− 1l⊗ Pf ⊗ 1l− 1l⊗ 1l⊗ Pf

)
Γ̌(j).

Therefore it is enough to show ‖QΨ‖ = eL(Ψ) for Ψ ∈ HN
fin where eL(Ψ) is

the error term which satisfies |eL(Ψ)| ≤ õ(L0)(‖Hm(P )Ψ‖+ ‖Ψ‖). On the one
hand, in [17, Lemma A.1], it is already proven that∥∥∥∥(

X − Γ̌(j)∗X ⊗ 1lΓ̌(j)
)
Ψ

∥∥∥∥ = eL(Ψ).

On the other hand, by Theorem 2.2, we have

‖1l⊗NfΨ‖ ≤ C
(
‖Hm(P )Ψ‖+ ‖Ψ‖

)
for some C > 0 (which depends on m) and therefore, by (29),∥∥∥∥[

1l⊗ Pfi − Γ̌(j)∗
(
1l⊗ Pfi ⊗ 1l + 1l⊗ 1l⊗ Pfi

)
Γ̌(j)

]
Ψ

∥∥∥∥
≤

(∥∥∥[j1(−i∇k), ki

]∥∥∥ +
∥∥∥[
j2(−i∇k), ki

]∥∥∥)
‖1l⊗NfΨ‖

≤const.

L

(
‖Hm(P )Ψ‖+ ‖Ψ‖

)
, i = 1, 2, 3,

where we use the fact ‖[jl(−i∇k), ki]‖ ≤ const./L (l = 1, 2). Hence we have
the desired assertion.
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(ii) Before we start the proof, we need some preparations. Let Sn be the

permutation group of degree n. For k(n) = (k
(n)
1 , . . . , k(n)

n ) ∈ R3n, k
(n)
j ∈ R3

and σ ∈ Sn, set k(n)
σ = (k

(n)
σ(1), . . . , k

(n)
σ(n)). We introduce a closed subspace

L2
sym(R3α1 × R3α2) of L2(R3α1 × R3α2), consisting of functions satisfying

ψ
(
k

(α1)
1,σ1

; k
(α2)
2,σ2

)
= ψ

(
k

(α1)
1 ; k

(α2)
2

)
for any σj ∈ Sαj

, j = 1, 2. Let h be a multiplication operator on L2(R3) by

the function h(k). For α = (α1, α2) ∈ N2
0, we define a linear operator h(α) on

L2
sym(R3α1 × R3α2) by

(
h(α)ψ

)(
k

(α1)
1 ; k

(α2)
2

)
=

∑
r=1,2

αr∑
l=1

h
(
k

(αr)
rl

)
ψ

(
k

(α1)
1 ; k

(α2)
2

)
,

where k
(αr)
rl is the l-th component of k(αr)

r = (k
(αr)
r1 , . . . , k(αr)

rαr
). It is well-known

that there is a natural identification such that

F =
∞⊕

α1,α2=0

L2
sym(R3α1 × R3α2), dΓ(⊕2h) =

∞⊕
α1,α2=0

h(α).

Note that the Hilbert space HN ⊗F has the following direct sum decomposi-
tion:

HN ⊗F =
⊕

α∈N2
0

HN ⊗ L2
sym(R3α1 × R3α2).

The restriction of H⊗
m(P ) to the subspace HN ⊗L2

sym(R3α1×R3α2), α 6= (0, 0),
is given by

(H⊗
mΨ)(k

(α1)
1 ; k

(α2)
2 ) =Hm

(
P −

∑
r=1,2

αr∑
l=1

k
(αr)
rl

)
Ψ(k

(α1)
1 ; k

(α2)
2 )

+
∑

r=1,2

αr∑
l=1

ωm(k
(αr)
rl )Ψ(k

(α1)
1 ; k

(α2)
2 )

for Ψ ∈ HN ⊗ L2
sym(R3α1 × R3α2). Thus

〈Ψ, H⊗
m(P )Ψ〉 ≥

∫ [
Em

(
P −

∑
r=1,2

αr∑
l=1

k
(αr)
rl

)
+

∑
r=1,2

αr∑
l=1

ωm(k
(αr)
rl )

]
×

∥∥∥Ψ(k
(α1)
1 ; k

(α2)
2 )

∥∥∥2

L2(R3)⊗F
dk

(α1)
1 dk

(α2)
2

≥
(
∆m(P ) + Em(P )

)
‖Ψ‖2, (31)

where we use the fact ωm(k1) + ωm(k2) ≥ ωm(k1 + k2). On the other hand, on
“0-particle space” HN ⊗ Ω, we have

〈ϕ⊗ Ω, H⊗
m(P )ϕ⊗ Ω〉 ≥ Em(P )‖ϕ⊗ Ω‖2. (32)
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Combining (31) and (32) we obtain (ii). 2

Let φ and φ̄ be nonnegative C∞ functions with φ2 + φ̄2 = 1, φ identically 1 on
the unit ball, and vanishing outside the ball of radius 2. Let φR(x) = φ(x/R).
For any Ψ ∈ HN

fin,

〈Ψ, Hm(P )Ψ〉 =〈φRΨ, Hm(P )φRΨ〉+ 〈φ̄RΨ, Hm(P )φ̄RΨ〉
− C〈Ψ, (∇φR)2Ψ〉 − C〈Ψ, (∇φ̄R)2Ψ〉 (33)

with C = 1/2mn + 1/2me, by the IMS formula. The last two terms vanish, if
we take R→∞.

Let
Σm,R(P ) = inf

ϕ∈DR, ‖ϕ‖=1
〈ϕ,Hm(P )ϕ〉,

where DR is given by (16)

Lemma 4.4 For all Ψ ∈ dom(Hm(P )) we have

〈Ψ, Hm(P )Ψ〉 ≥(Em(P ) + δm,R(P ))‖Ψ‖2 −∆m(P )‖φRΓ(j̃1)Ψ‖2

+ o(1)‖Ψ‖2
Hm(P ), (34)

where δm,R(P ) = min{∆m(P ),Σm,R(P )−Em(P )}, o(1) is the error term van-
ishing uniformly in Ψ as both L,R→∞ and ‖Ψ‖2

Hm(P ) := ‖Hm(P )Ψ‖2+‖Ψ‖2.

Proof. Clearly

〈φ̄RΨ, Hm(P )φ̄RΨ〉 ≥ Σm,R(P )‖φ̄RΨ‖2.

Thus, noting ‖φRPΩΓ̌(j)Φ‖ = ‖φRΓ(j̃1)Φ‖, we obtain (34) by Lemma 4.3 and
(33) for Ψ ∈ HN

fin. Since HN
fin is a core of Hm(P ), this inequality extends to

dom(Hm(P )). 2

Proof of Proposition 4.2
For any λ ∈ ess. spec(Hm(P )), there is a sequence {Ψn} such that ‖Ψn‖ =
1, w- lim

n→∞
Ψn = 0, and limn→∞ ‖(Hm(P )− λ)Ψn‖ = 0. For any n ∈ N,

〈Ψn, Hm(P )Ψn〉 ≥Em(P ) + δm,R(P )−∆m(P )‖φRΓ(j̃1)Ψn‖2

+ o(1)‖Ψn‖2
Hm(P )

by Lemma 4.4. First, take n→∞. Notice that

‖φRΓ(j̃1)Ψn‖2 =〈φ2
RΓ(j̃2

1)Ψn, (1l + p2 ⊗ 1l + 1l⊗Hf,m)−1/2

× (1l + p2 ⊗ 1l + 1l⊗Hf,m)1/2Ψn〉.
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Since (1l+p2⊗1l+1l⊗Hf,m)−1/2φRΓ(j̃1) is compact on every finite particle space
and 〈Ψn, 1l ⊗ NfΨn〉 is uniformly bounded on account of the positive photon
mass, we have ‖φRΓ(j̃1)Ψn‖ → 0 as n → ∞ and λ ≥ Em(P ) + δm,R(P ) +
o(1)(λ2 + 1). Taking R → ∞ and L → ∞, we obtain λ ≥ Em(P ) + δm(P ).
Here we use the fact Σm,R → Σm as R→∞ by (17). This means

inf ess. spec(Hm(P )) ≥ Em(P ) + δm(P ). 2

Proposition 4.5 For |P | < mn, ∆m(P ) > 0.

Proof. Let ∆m(P : k) = Em(P − k)− Em(P ) + ωm(k). Note that ∆m(P ) ≥
min{inf |k|≤|P | ∆m(P : k), inf |k|≥|P | ∆m(P : k)}. Thus, it sufficies to show that
inf |k|≤|P | ∆m(P : k) > 0 and inf |k|≥|P | ∆m(P : k) > 0. Applying Theorem A.1
(iii), we obtain

inf
|k|≤|P |

∆m(P : k) ≥ inf
|k|≤|P |

{
ωm(k)− |k||P |

mn

}
> 0

whenever |P | < mn. Moreover, again by Theorem A.1 (iii),

inf
|k|≥|P |

∆m(P : k) ≥ inf
|k|≥|P |

{
− P 2

2mn

+ ωm(k)
}

= − P 2

2mn

+
√
P 2 +m2 > 0

whenever |P | <
√

2mn

(
mn +

√
m2

n +m2

)
. 2

Proof of Theorem 4.1
By Proposition 4.5, δm(P ) > 0 for P ∈ Λm and |P | < mn. Thus, by Propo-
sition 4.2, one has inf ess. spec(Hm(P ))− Em(P ) ≥ δm(P ) > 0, which implies
Theorem 4.1. 2

5 Proof of Theorems 2.3, 2.4, and 2.5

5.1 Exponential decay

By the following lemma we can reduce the binding condition with massive
photons to the one with massless ones. Recall the definitions of Λ and Σ(P )
which are given by (18) and (17) respectively.
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Lemma 5.1 (i) Em(P ) → E(P ) as m↘ 0.
(ii) Σm(P ) is a convergent sequence and lim

m↘0
Σm(P ) ≥ Σ(P ).

(iii) Suppose that P ∈ Λ. Then there exists m > 0 such that, for all m > m ≥
0, P ∈ Λm.

Proof. (i) For m1 ≥ m2, Hm1(P ) ≥ Hm2(P ). Thus {Em(P )} is monotonically
decreasing and limm↘0Em(P ) exists. Clearly E(P ) ≤ limm↘0Em(P ).

We will prove E(P ) ≥ limm↘0Em(P ). For arbitrary ε > 0, there is ϕ ∈ HN
fin

such that ‖ϕ‖ = 1 and

〈ϕ,H(P )ϕ〉 ≤ E(P ) + ε.

Noting Hm(P ) ≤ H(P ) +m1l⊗Nf , we have

Em(P ) ≤ 〈ϕ,Hm(P )ϕ〉
≤ 〈ϕ, [H(P ) +m1l⊗Nf ]ϕ〉
≤ E(P ) + ε+m‖1l⊗N

1/2
f ϕ‖2.

Taking the limit m↘ 0 we obtain

lim
m↘0

Em(P ) ≤ E(P ) + ε.

Since ε > 0 is arbitrary, limm↘0Em(P ) ≤ E(P ) follows.

(ii) For m1 ≥ m2, we can easily see that Σm1(P ) ≥ Σm2(P ). Accordingly,
{Σm(P )} is monotically decreasing and has a finite limit
Σ̃(P ) := limm↘0 Σm(P ). Note that, for all m > 0, Σm(P ) ≥ Σ(P ). Thus we
have Σ̃(P ) ≥ Σ(P ).

(iii) Let P ∈ Λ. Then α = Σ(P ) − E(P ) > 0. Fix ε > 0 so that α − 2ε > 0.
There is an m > 0 such that, for all m < m, |Σ̃(P ) − Σm(P )| < ε and
|E(P )− Em(P )| < ε. Then

Σm(P )− Em(P ) = Σ(P )− E(P ) +
{
(Σm(P )− Σ̃(P )) + (Σ̃(P )− Σ(P ))

+ (E(P )− Em(P ))
}

≥ α− 2ε > 0.

This means P ∈ Λm if m < m. 2

Lemma 5.2 Let β be a real number and α =
∑N

j=1(1/2me) + N2/2mn. For
P ∈ Λ suppose that E(P ) + αβ2 < Σ(P ). For each P ∈ Λ and |P | < mn, let
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ΨP,m be a normalized ground state for Hm(P ). Then, for m > 0 sufficiently
small and R sufficiently large,

∥∥∥eβ|x|ΨP,m

∥∥∥2
≤ Cβ e4βR

(
1

Σ(P )− E(P )− αβ2 + o(1)
+ 1

)
,

where Cβ is a positive constant depends on β but independent of R,m, and
o(1) is the error term vanishing as m→ 0 and R→∞.

Remark 3 Existence of ΨP,m is guaranteed by Theorem 4.1 and Lemma 5.1
for small m.

Proof. Note first that each G ∈ C∞(R3N) with G, |∇jG| ∈ L∞(R3N),

[[Hm(P ), G], G] = −
N∑

j=1

1

me

(
∇jG

)2
− 1

mn

( N∑
j=1

∇jG
)2

. (35)

Take G(x) = χ(x/R)ef(x) where f(x) = β|x|/(1 + ε|x|) and 0 ≤ χ ≤ 1 is a
smooth function that is identically 1 outside the ball radius 2, and 0 inside
the ball radius 1. With a slight modification of [17, Proof of Lemma 6.2], we
get

〈
GΨP,m,

{
Hm(P )− Em(P )−

N∑
j=1

1

2me

|∇jf |2 −
1

2mn

( N∑
j=1

∇jf
)2}

GΨP,m

〉
≤Cβ e4βR (36)

by (35). Using the facts Σm,R(P ) ≥ Σ0,R(P ) for any m, |∇jf | ≤ β, and Lemma
5.1 (i), we obtain

LHS of (36) ≥ (Σm,R(P )− Em(P )− αβ2)‖GΨP,m‖2

≥
{
Σ(P )− E(P )− αβ2 + (Σ0,R(P )− Σ(P ))

+ (E(P )− Em(P ))
}
‖GΨp,m‖2

=
(
Σ(P )− E(P )− αβ2 + o(1)

)
‖GΨP,m‖2.

Therefore the assertion follows by taking ε→ 0. 2

5.2 A photon number bound and photon derivative bound
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Let

Pj = −i∇j ⊗ 1l + eA(xj), j = 1, . . . , N, (37)

P0 = P + i
N∑

j=1

∇j ⊗ 1l− 1l⊗ Pf − ZeA(0). (38)

For later use we first prove the following.

Lemma 5.3 Assume (V.1), (V.2) and (E.I.). Suppose that |P | < mn. Let
∆m(P : k) := Em(P − k)−Em(P )+ωm(k). Then the following assertion hold
for any m ≥ 0, coupling e, and cutoffs σ, κ.

(i) ∆m(P : k) ≥ (1−|P |/mn)|k|. Thus Hm(P − k)−Em(P )+ωm(k) has the
bounded inverse, denoted by RP,m(k), for k 6= 0.

(ii) ‖RP,m(k)‖ ≤ C/|k|, where C is a positive constant independent of m and
k.

(iii) ‖Pj,lRP,m(k)‖ ≤ C(1 + 1/|k|), j = 0, 1, . . . , N, l = 1, 2, 3.
(iv) ‖[Hm(P )−Em(P )]RP,m(k)‖χ0,κ(k) ≤ C(1+κ)χ0,κ(k), where χ0,κ is con-

tained in (10).

Proof. (i) If |k| ≤ |P |, the claim follows by Theorem A.1. Suppose that
|k| > |P |. Then, since |P ||k|/mn > P 2/2mn, we have

∆m(P : k) ≥ Em(P − k)− Em(P ) + |k|

≥ |k| − P 2

2mn

≥ |k| − |P ||k|
mn

=
(
1− |P |

mn

)
|k|

by Theorem A.1. (ii) immediately follows from (i).

(iii) This is a direct consequence of Lemma C.1 and (i).

(iv) First we remark that dom(Hm(P )) is independent of P and this fact plays
important role in the proof blow. Note that

[Hm(P )− Em(P )]RP,m(k) = 1l + [Hm(P )−Hm(P − k)− ωm(k)]RP,m(k).

For all Ψ ∈ HN
fin,

[Hm(P )−Hm(P − k)− ωm(k)]Ψ = [2k · (k −P0)− (k2 + ωm(k))]Ψ.

Therefore

∥∥∥(
Hm(P )−Hm(P−k)−ωm(k)

)
Ψ

∥∥∥ ≤ 2|k|
3∑

j=1

‖(P0,j−kj)Ψ‖+(k2+ωm(k))‖Ψ‖.
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Since there is a constant C independent of P,m and k such that

‖(P0,j − kj)Ψ‖ ≤ C
(
‖Hm(P − k)Ψ‖+ ‖Ψ‖

)
, j = 1, 2, 3,

by Lemma C.1, one has∥∥∥[Hm(P )−Hm(P − k)− ωm(k)]RP,m(k)Ψ
∥∥∥

≤ C
[
|k|

(
‖Hm(P − k)RP,m(k)Ψ‖+ ‖RP,m(k)Ψ‖

)
+ (k2 + ωm(k))‖RP,m(k)Ψ‖

]
.

Notice that

Hm(P − k)RP,m(k)Ψ =
{
1l +RP,m(k)[Em(P )− ωm(k)]

}
Ψ.

Thus, considering ∆m(P : k) ≥ (1− |P |/mn)|k| by (i),

‖Hm(P − k)RP,m(k)‖ ≤ 1 + ∆m(P : k)−1|Em(P )− ωm(k)|
≤ C (1 + |k|−1)

for |k| ≤ |P |. As for ωm(k)‖RP,m(k)‖ (|k| ≤ |P |), we have to be more careful.
By Theorem A.1 (iii),

‖RP,m(k)‖ ≤ ∆m(P : k)−1 ≤ [ωm(k)− |k||P |/mn]
−1

and hence

ωm(k)‖RP,m(k)‖ ≤ ωm(k)
[
ωm(k)− |k||P |/mn

]−1

= 1 +
|k||P |/mn

ωm(k)− |k||P |/mn

≤ 1 +
|P |

mn − |P |
<∞.

Combining these results, one concludes that∥∥∥[Hm(P )− Em(P )]RP,m(k)
∥∥∥χ0,κ(k) ≤ C κχ0,κ(k)

for |k| ≤ |P |.

Similarly, we have, for |k| > |P |,

|k| ‖Hm(P − k)RP,m(k)‖ ≤ C |k|,
|k| ‖RP,m(k)‖ ≤ C,

ωm(k)‖RP,m(k)‖ ≤ C.

Hence the assertion follows. 2
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Proposition 5.4 (photon number bound) Assume (V.1), (V.2), (E.I.) and
(N). Suppose that |P | < mn and σ = 0. Then

‖ar(k)ΨP,m‖ ≤ Cκ
χ0,κ(k)

|k|1/2
,

where Cκ is a positive constant independent of k and m, but depends on κ.

Proof. From the pull-through formula for ar(k) (see, e.g., [15]) one concludes
that, as an identity on L2(R3;HN),

ar(k)Hm(P )ΨP,m =[Hm(P − k) + ωm(k)]ar(k)ΨP,m

−
N∑

j=1

1

me

Pj · K(m)
j,r (xj, k)ΨP,m

− 1

mn

P0 · K(m)
0,r (0, k)ΨP,m

−
N∑

j=1

iσj

2me

· k ∧ K
(m)
j,r (xj, k)ΨP,m −

iσ0

2mn

· k ∧ K
(m)
0,r (0, k)ΨP,m,

where

K
(m)
j,r (k, x) := ej

χ0,κ(k)e
r(k)√

2(2π)3ωm(k)
e−ik·x, j = 0, 1, . . . , N, r = 1, 2

with e0 = Ze and ej = −e for j = 1, . . . , N . (Note that in the above we use
k · er(k) = 0.) Thus it follows that

[
Hm(P − k)− Em(P ) + ωm(k)

]
ar(k)ΨP,m

=
N∑

j=0

1

mj

Pj · K(m)
j,r (0, k)ΨP,m +

N∑
j=1

1

mj

Pj · δK(m)
j,r (xj, k)ΨP,m

+
N∑

j=1

iσj

2me

· k ∧ K
(m)
j,r (xj, k)ΨP,m +

iσ0

2mn

· k ∧ K
(m)
0,r (0, k)ΨP,m,

where δK
(m)
j,r (x, k) := K

(m)
j,r (x, k) − K

(m)
j,r (0, k) and m0 = mn, mj = me (j =

1, . . . , N).

By Lemma 5.3 (i), Hm(P − k) − Em(P ) + ωm(k) has the bounded inverse
RP,m(k) for any m ≥ 0. We also note that

1

me

Pj = i[Hm(P ), xj] +
1

mn

P0, j = 1, . . . , N.
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Accordingly we have

ar(k)ΨP,m

=iRP,m(k)[Hm(P )− Em(P )]
N∑

j=1

K
(m)
j,r (0, k) · xjΨP,m

+
1

mn

N∑
j=0

RP,m(k)P0 · K(m)
j,r (0, k)ΨP,m

+
N∑

j=1

1

me

RP,m(k)Pj · δK(m)
j,r (xj, k)ΨP,m

+
N∑

j=1

iRP,m(k)σj

2me

· k ∧ K
(m)
j,r (xj, k)ΨP,m +

iRP,m(k)σ0

2mn

· k ∧ K
(m)
0,r (0, k)ΨP,m

=:I1(k) + I2(k) + I3(k) + I4(k). (39)

By the neutrality condition (N), I2 = 0 and by Lemma 5.2 and 5.3, one
concludes that

‖I1(k)‖, ‖I4(k)‖ ≤
C

|k|1/2
χ0,κ(k).

As for I3(k), noting |δK(m)
j,r (xj, k)| ≤ {2(2π)3}−1/2|ej||k|1/2|xj|χ0,κ(k), we have

‖I3(k)‖ ≤
Cκ

|k|1/2
χ0,κ(k)

by Lemma 5.3. 2

Lemma 5.5 Assume (V.1), (V.2) and (E.I.). For all m > 0 and |P | < mn,

∇kRP,m(k) = RP,m(k)
[

1

mn

(P0 − k)− k

ωm(k)

]
RP,m(k) (40)

in the operator norm topology.

Proof. By the second resolvent formula, we have

RP,m(k + h)−RP,m(k)

=RP,m(k + h)[Hm(P − k)−Hm(P − k − h) + ωm(k)− ωm(k + h)]RP,m(k)

=RP,m(k + h)
[

1

mn

h · (P0 − k)− h · ∇kωm(k) +O(h2)
]
RP,m(k).

Thus passing through a limiting argument, the assertion (40) follows. 2
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Proposition 5.6 (photon derivative bound) Assume (V.1), (V.2), (E.I.),
(N) and σ = 0. Suppose that P ∈ Λ and |P | < mn. Then, for |k| < κ
and (k1, k2) 6= 0,

‖∇kar(k)ΨP,m‖ ≤
Cκ

|k|1/2
√
k2

1 + k2
2

, a.e. k, (41)

where Cκ is a positive constant independent of k,m and ∇j means the distri-
butional derivative.

Proof. By (39) we obtain

∇kar(k)ΨP,m

=i
[
∇kRP,m(k)

]
[Hm(P )− Em(P )]

N∑
j=1

K
(m)
j,r (0, k) · xjΨP,m (42)

+ iRP,m(k)[Hm(P )− Em(P )]
N∑

j=1

∇k

[
K

(m)
j,r (0, k) · xj

]
ΨP,m (43)

+
N∑

j=1

1

me

∇k

[
RP,m(k)

]
Pj · δK(m)

j,r (xj, k)ΨP,m (44)

+
N∑

j=1

1

me

RP,m(k)∇k

[
Pj · δK(m)

j,r (xj, k)
]
ΨP,m. (45)

+∇kI4(k). (46)

Applying Lemma 5.2, 5.3 and (40), we estimate the norms of (42) and (43) to
obtain

‖(42)‖, ‖(44)‖ ≤ Cκ

|k|3/2
.

Considering the fact |∇ker(k)| ≤ C/
√
k2

1 + k2
2 (k1, k2) 6= (0, 0), we also esti-

mate (43) and (45) with results

‖(43)‖, ‖(45)‖ ≤ Cκ

|k|1/2
√
k2

1 + k2
2

.

Similarly we can estimate ‖∇kI4(k)‖. This implies the assertion in (41). 2

5.3 Proof of Theorem 2.3

This proof is a slight modification of [17, Theorem 2.1] and we only provide
on an outline. For details, see [17]. For P ∈ Λ and |P | < mn, Hm(P ) has a
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normalized ground state ΨP,m whenever m is sufficiently small by Theorem
4.1 and Lemma 5.1. Take m1 > m2 > · · · tending to 0 and denote ΨP,mj

by
ΨP,j. The sequence {ΨP,j} is a minimizing sequence for H(P ). Indeed

Emj
(P ) = 〈ΨP,j, Hmj

(P )ΨP,j〉 ≥ 〈ΨP,j, H0(P )ΨP,j〉 ≥ E(P ),

Thus 〈ΨP,j, H(P )ΨP,j〉 → E(P ) as j → ∞ by Lemma 5.1. Since ‖ΨP,j‖ = 1,
there is a subsequence {ΨP,j′} of {ΨP,j} which has a weak limit ΨP . Because

0 ≤ 〈ΨP , (H(P )− E(P ))ΨP 〉 ≤ lim inf
j→∞

〈ΨP,j′ , (H(P )− E(P ))ΨP,j′〉 = 0,

it suffices to prove that ‖ΨP‖ = 1. (This means the strong convergence of
{ΨP,j′}.) Note that, by Proposition 5.4,

〈ΨP,j′ , 1l⊗NfΨP,j′〉 ≤ C <∞,

where C is a positive constant independent of j′. Hence it sufficies to show
the L2-convergence of each n-photon component Ψ

(n)
P,j′ , where we write ΨP,j′ =

⊕∞
n=0Ψ

(n)
P,j′ . From the exponential decay, it follows that, for each R > 0,

‖χ̃RΨP,j′‖ = ‖χ̃R e−β|x| eβ|x|ΨP,j′‖
≤ C e−βR,

where χ̃R := 1 − χR. Accordingly it suffices to show the L2-convergence in
the domain |x| < R. By Proposition 5.4, Ψ

(n)
P,j′(x1, . . . , xN , k1, . . . , kn) = 0 if

|ki| > κ for some i. By putting these facts together, it suffices to show L2-

convergence for Ψ
(n)
P,j′ restricted to the bounded domain

ΩR := {(x, k1, . . . , kn) | |x| < R, |ki| < κ, i = 1, . . . , n} ⊂ R3(N+n).

By Proposition 5.6, {Ψ(n)
P,j′}j′ is a bounded sequence in W 1,p(ΩR) for each p < 2

and R > 0. (It is not hard to check that

‖∇ki
Ψ

(n)
P,j′‖p

Lp(ΩR) ≤ C
∫
|k|<κ

dk‖∇kar(k)ΨP,j′‖p ≤ Const <∞

and ‖∇xΨ
(n)
P,j′‖p

Lp(ΩR) ≤ Const < ∞.) From the weak convergence of {Ψ(n)
P,j′}

in L2(ΩR), Ψ
(n)
P,j′ weakly converges to Ψ

(n)
P in W 1,p(ΩR). Now we can apply

the Rellich-Kondrachov theorem [25, Theorem 8.9]. Then {Ψ(n)
P,j′} converges

strongly to {Ψ(n)
P } in Lq(ΩR) of 1 ≤ q ≤ 3p(N +n)/3(N +n)− p. If we choose

p as 2 > p > 6(N + n)/[2 + 3(N + n)], we obtain the strong convergence of
{ΨP,j′} in L2(ΩR). 2
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5.4 Proof of Theorem 2.4 and 2.5

Let

Σ(N) = lim
R→∞

(
inf

ϕ∈D̃R,‖ϕ‖=1
〈ϕ,HNϕ〉

)
with

D̃R = {ϕ ∈ HN+1
fin |ϕ(x) = 0, if |x| < R},

where HN is defined by (9).

Lemma 5.7 (i) For all P ∈ R3,

Σ(N) ≤ Σ(P ).

(ii) Σ(N) = min
{
Eβ + Eβ̄ | β ∈ ΠN and β 6= ∅, {0, 1, . . . , N}

}
, where Eβ is

given by (19).

Proof. (i) Assume that there is a P0 ∈ R3 such that Σ(N) > Σ(P0) and set
γ := Σ(N) − Σ(P0) > 0. There exists R0 > 0 so that, for all R > R0, γR :=

Σ
(N)
R − ΣR(P0) > 0. Here Σ

(N)
R and ΣR(P ) stands for infϕ∈D̃R,‖ϕ‖=1〈ϕ,HNϕ〉

and infϕ∈DR,‖ϕ‖=1〈ϕ,H(P )ϕ〉 respectively. (Note that limR→∞ γR = γ.) Take
R as R > R0. This R is kept fixed in the following. There is a ϕ ∈ DR, ‖ϕ‖ = 1
so that

〈ϕ,H(P0)ϕ〉 ≤ Σ
(N)
R − γR/2.

Since 〈ϕ,H(P )ϕ〉 is continuous in P , there is a δ > 0 such that, for all P with
|P − P0| ≤ δ,

〈ϕ,H(P )ϕ〉 ≤ Σ
(N)
R − γR/4.

Pick f ∈ C∞(R3) as suppf ⊆ {P ∈ R3 | |P − P0| ≤ δ}, ‖f‖ = 1 and define
ϕf := f × ϕ ∈ HN . Then we have

〈ϕf , UHNU
∗ϕf〉 ≤ Σ

(N)
R − γR/4.

Notice that U∗ϕf (x) = 0 if |x| < R/2N . Since HN+1
fin is a core of HN , there is a

sequence {ϕn} in HN+1
fin so that ‖ϕn‖ = 1, ϕn → U∗ϕf and HNϕn → HNU

∗ϕf

as n → ∞. Let j and j̄ be C∞ functions with j2 + j̄2 = 1, j identically 1 on
the unit ball and vanishing outside the ball of radius 2. Set jR(x) = j(4Nx/R)
and j̄R(x) = j̄(4Nx/R). Then one gets

〈ϕn, HNϕn〉 = 〈jRϕn, HNjRϕn〉+ 〈j̄Rϕn, HN j̄Rϕn〉+ oR(ϕn)

by the IMS localization formula. For all ε > 0, there is a n′ such that, for all
n > n′,

|〈ϕn, HNϕn〉 − 〈ϕf , UHNU
∗ϕf〉| < ε.
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Thus, for all n > n′,

〈jRϕn, HNjRϕn〉+ 〈j̄Rϕn, HN j̄Rϕn〉+ oR(ϕn)− ε ≤ Σ
(N)
R − γR/4.

Since j̄Rϕn/‖j̄Rϕn‖ ∈ D̃R/2N , we have

〈jRϕn, HNjRϕn〉+ Σ
(N)
R/2N‖j̄Rϕn‖2 + oR(ϕn)− ε ≤ Σ

(N)
R − γR/4.

We will discuss the limit n→∞. Note that

〈jRϕn, HNjRϕn〉 = 〈j2
Rϕn, HNϕn〉+ oR(ϕn)

→ 〈j2
RU

∗ϕf , HNU
∗ϕf〉+ oR(U∗ϕf ) (n→∞).

Here we use the fact limn→∞ oR(ϕn) = oR(U∗ϕf ) because |oR(ϕn)| ≤ õ(R0)
(‖HNϕn‖2 + ‖ϕn‖2). By the fact jRU

∗ϕf = 0, we conclude that
limn→∞〈jRϕn, HNjRϕn〉 = oR(U∗ϕf ). Taking the limit n→∞, we get

Σ
(N)
R/2N‖j̄RU

∗ϕf‖2 + oR(U∗ϕf )− ε ≤ Σ
(N)
R − γR/4.

Since ε is arbitrary and j̄RU
∗ϕf = U∗ϕf , we get

Σ
(N)
R/2N + oR(U∗ϕf ) ≤ Σ

(N)
R − γR/4.

Therefore, taking the limit R→∞, we conclude that

Σ(N) ≤ Σ(N) − γ/4.

This is a contradiction. Proof of (ii) is a slight modification of the one of [16,
Theorem 3]. 2

Proof of Theorem 2.4
Note that {P ∈ R3 |E(P ) ≤ Σ(N)} ⊂ Λ by the above lemma. By the prop-
erty E(P ) ≤ E(0) + P 2/2mn (Theorem A.1), one also has {P ∈ R3 |E(0) +
P 2/2mn ≤ Σ(N)} ⊆ Λ. Considering the facts E(0) = EN (Theorem A.1) and
Lemma 5.7 (ii), we obtain {P ∈ R3 | |P | <

√
2mnEbin} ⊆ Λ. Now Theorem

2.4 follows from Theorem 2.3. 2

Proof of Theorem 2.5
Basic idea of the proof is almost same as Theorem 2.3 and 2.4. Since the sys-
tem is not neutral, the term I2(k) in (39) does not vanish. We can calculate the
contribution of I2(k) as |I2(k)| ≤ const.|k|−3/2χ0,κ(k) in the photon number
bound and |∇kI2(k)| ≤ const.|k|−3/2 × (k2

1 + k2
2)
−1/2 for |k| < κ in the photon

derivative bound by Lemma 5.3. If we take the infrared cutoff σ as σ > 0,
these singularities at origin k = 0 do not influence our proof of Theorem 2.3
and 2.4, and the same arguments still hold. 2
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6 Spinless electrons, Boltzmann statistics

In this section we consider an arbitrary collection of charges with no symmetry
condition on the wave function imposed. The Hamiltonian is given by

HN =
N∑

j=0

1

2mj

(
− i∇j ⊗ 1l− ejA(xj)

)2

+ V ⊗ 1l + 1l⊗Hf . (47)

HN acts on [⊗N+1L2(R3)] ⊗ F . We require mj > 0, while ej is arbitrary,
j = 0, . . . , N . Note that the neutrality condition (N) can then be rewritten as

N∑
j=0

ej = 0. (N’)

Moreover, because we do not consider any statistics of the particles, our as-
sumptions for potential are generalized as follows:

(V’.1) V is a pair potential of the form

V (x0, . . . , xN) =
∑

0≤i<j≤N

Vij(xi − xj)

and each Vij is infinitesimally small with respect to −∆,
(V’.2) each Vij is in L2

loc(R3) and Vij(x) → 0 as |x| → ∞.

Following the argument in Section 2.2, HN admits the decomposition

HN =
∫ ⊕

R3
H(P ) dP.

We estabilish the energy inequality (E.I.).

Proposition 6.1 Assume (V’.1). Then, the energy inequality (E.I.) holds for
arbitrary photon mass m, couplings e1, . . . , eN , and cutoffs σ, κ.

Proof. See next subsection. 2

Using this proposition we infer the following assertions.

Theorem 6.2 Assume (V’.1), (V’.2), and (N’). Suppose that the infrared
cutoff σ = 0 holds. If P ∈ Λ and |P | < m0, then H(P ) has a ground state.
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Theorem 6.3 Assume (V’.1), (V’.2), and (N’). Suppose that the infrared

cutoff σ = 0 holds. Moreover, suppose Ebin > 0, and |P | < min
{
m0,√

2m0Ebin

}
. Then H(P ) has a ground state.

Theorem 6.4 Assume (V’.1), (V’.2) and that the system is not neutral in
the sense that (N’) does not hold. Suppose that σ > 0. Then H(P ) has a
ground state for P ∈ Λ and |P | < m0. Moreover if Ebin > 0, then H(P ) has a
ground state for |P | < min{m0,

√
2m0Ebin}.

Let hN be the Hamiltonian HN ignoring the quantized radiation field, i.e.,

hN = −
N∑

j=0

∆j

2mj

+ V.

For hN one can define a binding energy ebin in correspondence to Ebin, see
Appendix ??.

Proposition 6.5 For all σ, κ with 0 ≤ σ < κ <∞, one has

Ebin ≥ ebin − α(κ2 − σ2)

with α = π
∑N

j=0(e
2
j/16π2mj). Thus if ebin > 0 and κ2 − σ2 < ebin/α, then

H(P ) has a ground state for |P | < min{m0,
√

2m0Ebin}.

Proof. Let hβ be the Hamiltonian Hβ omitting the quantized radiation field
and E(hβ) = inf spec(hβ) (see Appendix ?? for details). By the diamagnetic
inequality (see, e.g. [20]), one concludes

Eβ ≥ E(hβ)

for all β ∈ ΠN . On the other hand, for f ∈ dom(−∆) with ‖f‖ = 1,

EN ≤ 〈f ⊗ Ω, HNf ⊗ Ω〉 =
〈
f,

[
−

N∑
j=0

1

2mj

∆j + V + α(κ2 − σ2)
]
f

〉
,

which implies
EN ≤ E(hN) + α(κ2 − σ2),

where E(hN) = inf spec(hN). Combining both results yields the assertion. 2

Example We consider the hydrogen atom, i.e., N = 1 and V01(x0 − x1) =
−e2/4π|x0−x1| (e0 = −e, e1 = e). The system is neutral and we allow σ = 0.
By Proposition 6.5, one concludes that Ebin > 0 if

µe4

32π2
− e2κ2

16π2µ
> 0 (48)
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with 1/µ = 1/m0 + 1/m1, because ebin = E(h{0}) + E(h{1}) − E(h1) =
−E(h1) = µe4/32π2. This rough estimate provides us with the following im-
formation.

(1) In case of hydrogen in nature e2/4π ' 1/137 and the ultraviolet cutoff κ
must satisfy

κ <

√
2π

137
µ.

(2) If we regard e as the coupling parameter, Ebin > 0 provided

√
2κ

µ
< e.

The stronger the coupling e, the larger the admissible ultraviolet cutoff
κ.

Remark 4 In [14] the binding condition ebin > 0 has been proven for the
hydrogen molecule H2 with spin 0 nuclei. The antisymmetry of the electronic
part of the wave function can be absorbed into a spin singlet state. Using this
result, Theorem 6.3 implies the existence of the ground state for a hydrogen-
like molecule coupled to the radiation field, provided κ is not too large. Thus
if κ is not too large, also the hydrogen molecule coupled to the radiation field
has a ground state.

6.1 Proof of Proposition 6.1

We first note that the energy inequality (E.I.) for the Nelson model is estab-
lished by L. Gross [18]. In this subsection, we give a proof of (E.I.) for the
Pauli-Fierz model. We will treat the case m = 0 for notational convenience.
All arguments hold for m > 0, also. Let W = ⊕3L2(R3) and q be the bilinear
form defined by

q(f, g) =
1

2

3∑
µ,ν=1

∫
R3
dµν(k)f̂µ(k)ĝν(k) dk, f, g ∈ W,

where dµν(k) =
∑

r=1,2 e
r
µ(k)er

ν(k) = δµν−kµkν/|k|2. Let (Q, µ) be the probabil-
ity measure space for the mean zero Gaussian random variables {φ(f) | f ∈ W}
with covariance given by∫

Q
φ(f)φ(g) dµ(φ) =

1

2
q(f, g).

The photon Fock space F can be naturally identified with L2(Q, dµ) [23]. This
representation is called the Schrödinger representation. Under this identifica-
tion HM ∼= L2(R3M ×Q, dx⊗ dµ) for arbitrary M ∈ N. The unitary operator
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from HM to L2(R3M ×Q, dx⊗dµ) corresponding to this natural identification
is denoted by S̃M .

Let (X , ν) be a σ-finite measure space. f ∈ L2(X , ν) is called positive if f
is nonnegative a.e. and is not the zero function. A bounded operator A is
positivity preserving if 〈f1, Af2〉 ≥ 0 for all positive f1 and f2 ∈ L2(X , dν). If
A is positivity preserving,

|Af | ≤ A|f | a.e. (49)

for any f ∈ L2(X , dν)[18,33]. One advantage of the Schrödinger representation
is the following fact: the operator SM+1 e−tHM S∗M+1 is a positivity preserving

operator in L2(R3(M+1) × Q, dx ⊗ dµ), where SM+1 = S̃M+1 exp{iπ
2
1l ⊗ Nf}

[21].

From now on, we fix N ∈ N arbitrarly and denote S = SN for notational
simplicity.

Lemma 6.6 Let V(P ) and K(P ) be the operators defined by (21) and (22)
respectively.

(i) SV(0)S∗ is positivity preserving.
(ii) S e−sK(0)S∗ is positivity preserving for all s > 0.

Proof. (i) Since exp{ix1 · ∇j ⊗ 1l} and exp{ix1 · 1l⊗ Pf} are translations, the
result follows.

(ii) Note that SV(0)S∗, SV(0)∗S∗ and S e−sHAS∗ are positivity preserving. Thus
S e−sK(0)S∗ is also positivity preserving by the fact e−sK(0) = V(0) e−sHAV(0)∗.
2

Lemma 6.7 For all P ∈ R3, the following holds.

(i) |S V(P )S∗F | ≤ S V(0)S∗|F | a.e..
(ii) |S e−sK(P )S∗F | ≤ S e−sK(0)S∗|F | a.e..

Proof. (i) For a.e. x and φ,

|(S V(P )S∗F )(x, φ)| = |eix1·P (S V(0)S∗F )(x, φ)|
≤ |(S V(0)S∗F )(x, φ)|
≤ (S V(0)S∗|F |)(x, φ)

by Lemma 6.6.
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(ii) By (i), Lemma 6.6, and the fact that S e−sHAS∗ is positivity preserving,

|S e−sK(P )S∗F | = |S V(P )S∗S e−sHAS∗S V(P )∗S∗F |
≤ S V(0)S∗|S e−sHAS∗S V(P )∗S∗F |
≤ (SV(0)S∗)(Se−sHAS∗)|SV(P )∗S∗F |
≤ (SV(0)S∗)(Se−sHAS∗)(SV(0)∗S∗)|F |
= S e−sK(0)S∗|F |

for a.e. x and φ. 2

Proposition 6.8 For all t > 0 and P ∈ R3,

|S e−tH(P )S∗F | ≤ S e−tH(0)S∗|F | a.e..

Proof. Let An(P ) = (e−tHPF/n e−tK(P )/n)n for all n ∈ N. By Kato’s strong
product formula [30, Theorem S.21], s- lim

n→∞
An(P ) = e−tH(P ). For all n ∈ N,

|SAn(P )S∗F | ≤ SAn(0)S∗|F |

by Lemma 6.7 and the fact that S e−sHPFS∗ is positivity preserving. Taking
the limit n→∞, we get the desired result. 2

Proof of Proposition 6.1.
By Proposition 6.8 we get

〈F, S e−tH(P )S∗F 〉 ≤ 〈|F |, S e−tH(0)S∗|F |〉.

for F ∈ L2(R3N ×Q, dx⊗ dµ). From this we immediately obtain the desired
result. 2

A Properties of the ground state energy

Let HN,m be the Hamiltonian (9) with the photon dispersion relation ωm(k) =√
k2 +m2 instead of ω(k) = |k|. Note that Theorem 2.1 also holds for HN,m

with arbitrarym ≥ 0. ThereforeHm(P ) is self-adjoint onAN⊗1l∩N
j=1dom(−∆j⊗

1l)∩dom(1l⊗P 2
f )∩dom(1l⊗Hf,m), essentially self-adjoint onHN

fin for all e,m, Z,
cutoffs and P under the assumptions (V. 1) and (V. 2). We denote the infini-
mum of the spectrum of HN,m by EN,m. The purpose of this section is to prove
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a few simple properties of the function Em(P ). We note, for starters that the
functional

〈Ψ, [Hm(P )− 1

2mn

P 2]Ψ〉 ,

is linear in P . The infimum of this expression over all normalized vectors Ψ,
is a concave function of P and hence we can write

Em(P ) =
1

2mn

P 2 + Em(0)− g(P ) ,

where g(P ) is a convex function obeying the normalization condition g(0) = 0.
Further, the function Em(P ) and hence g(P ) is even. This is a concequence
of the time reversal symmetry of the problem. More precisely, let T be the
time reversal operator which is defined by complex conjugating the wave
function, reversing all photon momenta, multiplying by (−1)1l⊗N2 and mul-
tiplying the spinor by ΠN

j=1σj2 with σj = (σj1, σj2, σj3) j = 1, . . . , N . Here
N2 := dΓ(0⊕1l) is the number operator of photons in the 2 polarization state.
Clearly TPfT = −Pf , TA(xj)T = −A(xj) and TB(xj)T = −B(xj). Moreover,
TσjT = −σj. Hence Hm(P ) and Hm(−P ) are (antiunitarily) equivalent and
therefore Em(−P ) = Em(P ).

Theorem A.1 Assume (V.1), (V.2) and (E.I.). For all m ≥ 0, Z, coupling
e, and cutoffs 0 ≤ σ < κ <∞, the following estimate holds

Em(P − k)− Em(P ) ≥

−
|k||P |
mn

+ k2

2mn
if |k| ≤ |P |,

− P 2

2mn
if |k| ≥ |P |

. (A.1)

Further Em(0) = EN,m.

Proof: Since g(P ) is convex, even and g(0) = 0 it follows that g(P ) ≥ 0
for all P . Further, by the energy inequality Em(0) ≤ Em(P ) we learn that
g(P ) ≤ 1

2mn
P 2. Thus g(P ) satisfies the assumption of Lemma A.2 below and

the inequality (A.1) follows. The inequality EN,m ≤ Em(0) is a consequence
of the fact that EN,m is given by a less restrictive minimization problem than
Em(0). To prove the converse we simply note that due to the direct integral
representation of HN,m in terms of Hm(P ) we get that

〈Ψ, HN,mΨ〉 ≥
∫

R3
|f(P )|2Em(P )dP (A.2)

for some function f(P ) with
∫
R3 |f(P )|2dP = 1. Since, by assumption Em(0) ≤

Em(P ), the claim is proved. 2

Denote by C the set of convex functions g : Rn → R that satisfy 0 ≤ g(x) ≤
|x|2/2.
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Lemma A.2 Fix any two points P and Q in Rn. Then the function

∆(P,Q) := sup{g(P )− g(Q) : g ∈ C}

equals

∆(P,Q) =

Q · (P −Q) + |P −Q||Q|, if |P −Q| ≤ |Q|,
P 2/2, if |P −Q| ≥ |Q|.

Moreover the maximizer is given by

g(x) =

Q · (x−Q) + |x−Q||Q|, if |x−Q| ≤ |Q|,
|x|2/2, if |x−Q| ≥ |Q|.

Proof. First we set g(Q) = A where A > 0 is an arbitrary number less than
Q2/2. Next we consider all the rays starting at (Q,A) that are tangent to the
surface z = x2/2 (x ∈ Rn). Such a ray is given in parametrized form by

x(t) = Q+ te, z(t) = A+ tE,

where e is a unit vector in Rn and E is a real number. As we said, this ray
has to touch the surface at the point (Q+ t0e, A+ t0E) which means that

A+ t0E = (Q+ t0e)
2/2

together with the tangency condition (e, E)⊥(Q+ t0e,−1). From this one sees
that

t20 = Q2 − 2A > 0

and
E = Q · e+ t0.

Thus, for every direction e there are two touching points

x0 = Q± e
√
Q2 − 2A, z0 = Q2 − A±Q · e

√
Q2 − 2A.

Note that the x components of the touching points sit on a sphere in Rn given
by the equation (x−Q)2 = Q2 − 2A.

The point about these touching segments is the following. Every function g ∈ C
with g(Q) = A must have its graph below this segment, in other words

g(Q+ te) ≤ A+ tE

for all t with t2 ≤ Q2 − 2A. Thus, if P is inside the sphere, i.e.,

(P −Q)2 ≤ Q2 − 2A,

41



we have that P = Q+ te and hence

g(P ) ≤ A+ tE = A+ t(Q · e+ t0) = A+Q · (P −Q) + |P −Q|
√
Q2 − 2A,

noting that t and t0 need to have the same sign. Thus

g(P )− g(Q) ≤ Q · (P −Q) + |P −Q|
√
Q2 − 2A.

Next we consider the case P is outside the sphere. Clearly in this case the
largest value for g(P ) is P 2/2 and hence in this case

g(P )− g(Q) ≤ P 2/2− A.

Thus we have that

g(P )− g(Q)

≤

Q · (P −Q) + |P −Q|
√
Q2 − 2A, if (P −Q)2 ≤ Q2 − 2A,

P 2/2− A, if (P −Q)2 ≥ Q2 − 2A.

Note that for (P −Q)2 = Q2 − 2A we find that

Q · (P −Q) + |P −Q|
√
Q2 − 2A = P 2/2− A.

Next we claim that

g(P )− g(Q) ≤

Q · (P −Q) + |P −Q||Q|, if (P −Q)2 ≤ Q2,

P 2/2, if (P −Q)2 ≥ Q2.

This is obvious on the set of all Qs with (P − Q)2 ≤ Q2 − 2A and for all
those that satisfy (p−Q)2 ≥ Q2. Thus, it remains to show that for all Qs that
satisfy Q2 − 2A ≤ (P −Q)2 ≤ Q2,

P 2/2− A ≤ Q · (P −Q) + |P −Q||Q|,

which is the same as
(|Q| − |P −Q|)2/2 ≤ A.

Since |P −Q| ≤ |Q| it suffices to show that

|Q| − |P −Q| ≤
√

2A

or
|P −Q| ≥ |Q| −

√
2A.

Since, by assumption |P −Q| ≥
√
Q2 − 2A this follows once we show that√

Q2 − 2A ≥ |Q| −
√

2A.
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Squaring both sides yields

Q2 − 2A ≥ Q2 − 2|Q|
√

2A+ 2A

or equivalently
|Q| ≥

√
2A

which follows from the fact that A ≤ Q2/2. 2

Proof of Proposition ??

Write F (P ) as

F (P ) =
P 2

2
+ F (0)− h(P )

where h(P ) is convex. From (b) in Proposition ?? we get h(P ) ≥ 0 and from
(a) we learn that h(P ) ≤ P 2/2. Hence

F (P − k)− F (P ) =
(P − k)2

2
− P 2

2
− [h(P − k)− h(P )]

= −k · P +
k2

2
− [h(P − k)− h(P ).

Using the lemma above we get

h(P − k)− h(P ) ≤

−P · k + |k||P |, if |k| ≤ |P |,
(P − k)2/2, if |k| ≥ |P |

and hence

F (P − k)− F (P ) ≥ −k · P +
k2

2
−

−P · k + |k||P |, if |k| ≤ |P |,
(P − k)2/2, if |k| ≥ |P |

=

−|k||P |+
k2

2
, if |k| ≤ |P |,

−P 2

2
, if |k| ≥ |P |.

This proves the proposition. 2

B Proof of Proposition 2.6

In order to clarify the dependence of mn, we denote our Hamiltonian by
H(P ;mn) instead of H(P ). Also we denote the bottom of spectrum of
H(P ;mn) by E(P ;mn).

Lemma B.1 (i) E(P ;mn) → E∞
N as mn →∞.
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(ii) Σ(P ;mn) ≥ Σ∞
N for all mn and P , where Σ(P ;mn) and Σ∞

N denote the
threshold energy correspoinding to H(P ;mn) and H∞

N which are similarly
defined by (17).

Proof. (i) For all mn > 0, H(P ;mn) and H∞
N are both essentially self-adjoint

on HN
fin by Proposition 2.1 and Theorem 2.2. Moreover, for all ϕ ∈ HN

fin,
H(P ;mn)ϕ → H∞

N ϕ as mn → ∞. Therefore H(P ;mn) → H∞
N in the strong

resolvent sense by [30, Theorem VIII.25] which implies the desired result by
[30, Theorem VIII.24].

(ii) This follows from the operator inequality H(P ;mn) ≥ H∞
N . 2

Proof of Proposition 2.6
Note first that, by [16],

Σ∞
N = min

{
E∞

β + E∞
β̄ | β ⊂ {1, . . . , N} and β 6= ∅, {1, . . . , N}

}
.

By Lemma B.1 (i), there is a mn > 0 such that

E(0;mn)− E∞
N <

E∞
bin

2
.

(Remark, here, that E(0;mn) ≥ E∞
N .) Hence, by Lemma B.1 (ii) and Theorem

A.1 (ii),

Σ(P ;mn)− E(P ;mn) ≥ Σ∞
N − E(0;mn)−

P 2

2mn

≥ Σ∞
N − E∞

N − P 2

2mn

− E∞
bin

2

=
E∞

bin

2
− P 2

2mn

.

Thus if |P | <
√
mnE∞

bin, the binding condition (B.C.) follows. 2

C A uniform estimate for Pj

Let Pj and P0 be the linear operators defined by (37) and (38).

Lemma C.1 For each j = 0, 1, . . . , N, l = 1, 2, 3 and ϕ ∈ dom(Hm(P )),
there is a constant C independent of m and P such that

‖Pj,lϕ‖ ≤ C
(
‖Hm(P )ϕ‖+ ‖ϕ‖

)
.
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Proof. Throughout this proof, we use the symbol HV =0(P ) which means the
Hamiltonian (14) with V = 0. By Lemma 3.7 (and the fact H̃(P ) = H(P )
and H̃V =0(P ) = HV =0(P )), there is a constant C1 > 0 independent of m and
P so that

〈ϕ,HV =0(P )ϕ〉 ≤ C1

(
〈ϕ,H(P )ϕ〉+ ‖ϕ‖2

)
for ϕ ∈ HN

fin. Since H(P ) ≤ Hm(P ), we have

‖Pj,lϕ‖2 ≤ 〈ϕ,HV =0(P )ϕ〉
≤ C1

(
〈ϕ,H(P )ϕ〉+ ‖ϕ‖2

)
≤ C1

(
〈ϕ,Hm(P )ϕ〉+ ‖ϕ‖2

)
≤ 2C1

(
‖Hm(P )ϕ‖2 + ‖ϕ‖2

)
.

Since HN
fin is a core of Hm(P ), the lemma follows. 2
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